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Abstract
Word embeddings have been a key building block for deep learning NLP in which
models relied heavily on word embeddings in many different tasks. In this paper, a
model is proposed based on using Bidirectional LSTM/CRF with word embeddings
to perform named entity recognition for any language. This is done by training a
model on a source language (English) and transforming word embeddings from the
target language into word embeddings of the source language by using an orthogonal
linear transformation matrix. Evaluation of the model shows that by training a
model on an English dataset the model was capable of detecting named entities in
an Arabic dataset without neither training or fine tuning the model on an Arabic
language dataset.

1. Introduction1

Named Entity Recognition (NER) is an important component of information2

extraction that aims at extracting named entities from textual data. Named entities3

are words that represent a known person, location, organization or any other entity4

that can be identified by its name. Extraction of named entities can be used to5

further improve search engine queries [1] or for question answering [2]. Detection of6

named entities requires building hand annotated datasets for each target language7

which consumes significant human labor and time.8

NER systems used to rely on hand coded features, part-of-speech (POS) tags,9

semantic lexicons and huge gazetteers [3]. However this restricted the model’s per-10

formance and required huge work and domain knowledge to find suitable features.11

Current state-of-the-art systems in NER are very accurate with performance12

exceeding 90% [4] [5] by using a neural network composed of a Bidirectional LSTM13

layer [6] and a Conditional Random Field (CRF) classifier [7]. However, these models14

are only trained for a specific language (English for example) and can not be used15

on any other language.16

Due to language dependence, extending the knowledge obtained by these models17

to new languages is impossible. Thus trying to support new languages requires18

building new models that only work on the language they are trained on. The effect19

of this is that the number of languages that can be supported in an application is20

limited by the amount of labeled data that can be obtained in every language and21

the performance of each model.22

In this work, a novel method is proposed for NER by training a model on an En-23

glish corpus and evaluating the resulting model on an Arabic corpus by transforming24
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the Word embedding space from Arabic to English. The method can be extended25

to any language as long as it is possible to create the transformation matrix for its26

word embeddings. The proposed model does not explicitly rely on language specific27

features since the employed word embedding model implicitly captures language28

specific features and benefits from morphological features of words. This brings29

about a model that is both simple and efficient.30

The paper organization is as follows. The problem is defined in details in Sec-31

tion 2. Previous NER models are reviewed in Section 3. The proposed language32

independent NER model is presented in Section 4. Experimental results produced33

when the model is applied to a new target language are analyzed in Section 5 and34

Section 6 concludes the paper.35

2. Problem Statement36

The language independent NER problem can be composed of two sub problems37

the first being the detection of named entities and the second being language in-38

dependence. The sub problem of detecting named entities is a sequence labeling39

problem in which the goal is to find out words that are named entities (e.g.,: Per-40

sons, Organizations, Locations, ...).41

A named entity is a word or a phrase that stands consistently for some referent.42

This includes names of people, places, organizations. This can also include temporal43

expressions (e.g., January fifth 2010, August, 20 November). Numerical expressions44

can also be considered named entities (e.g., $50, 25.5%).45

For example in Figure 1 each word is labeled in a text sequence as a named46

entity (In this case a person and a location). Outside words are labeled with ”O”

Figure 1: An NER Example
47

following the IOB (Inside-Outside-Beginning) format presented in [8]. The IOB48

format prefixes the class of the beginning word with a ”B-” indicating it’s the first49

word in this named entity. while the following words that belong to the same entity50

will be prefixed with ”I-” which stands for inside. This way we can label named51

entities that are longer than 1 word. Refer to Figure 2 for illustration.

Figure 2: The IOB format
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52

The second sub problem addressed here is language independence. The goal of53

building language independent models is to have solutions that can ultimately solve54

problems regardless of the language it receives. Ideally these models will learn the55

underlying structure of human language and thus be able to tackle the problems56

addressed at it without being concerned with the language it uses.57

For example there exist many data sets for NER in English. However, Arabic58

data is very scarce. A model that is trained using English data and can be extended59

to solve Arabic input is said to be language independent (Figure 3).

Figure 3: A language independent model
60

3. Related Work61

Currently NER multilingual systems approach the problem by relying on data62

sets that are designed for building multilingual models like the UN parallel corpora63

[9]. In following subsections we will explore these approaches and their limitations64

before proposing the new approach.65

3.1. Cross Lingual Resources66

The cross lingual resources approach is centered around finding common features67

in languages or features that are language dependent. The goal of this approach is68

to unify the features of more than one language in order to build a classifier that is69

capable of finding the named entities based only on these features.70

The system [10] incorporates Wikipedia and other knowledge bases like DBpedia71

[11]. It uses features like cross-lingual capitalization, transliteration and DBpedia72

based labeling.73

74

Cross-lingual Capitalization: Since Arabic has no capitalization DBpedia75

was used to find capitalization weights for a word and be used as a feature.76

An example: the phrase ”Pacific Ocean” was capitalized 36.7% of the time.77

Thus, the arabic word for ”Ocean” was assigned the feature ”B-CAPS-0.4” and the78

arabic word for ”Pacific” was assigned the feature ”I-CAPS-0.4”. The prefix of the79

feature determines if the word was a ”Beginning” or ”Inside” word. The body of the80

feature ”CAPS” symbols capitalization and the suffix of the feature is the frequency81

of being ”CAPS”.82
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Transliteration: The intuition behind transliteration is that named entities are83

usually transliterated rather than translated. For example the word ”Hassan” is an84

arabic name and also means ”good”. They use a transliteration weight as a feature85

similar to the capitalization weight.86

DBpedia based labeling: DBpedia is a large collaboratively-built knowledge87

base in which structured information is extracted from Wikipedia. For exam-88

ple, NASA is assigned the following types: Agent, Organization, and Government89

Agency. These types were used as a feature for each word (if it exists in DBpedia).90

The problem of this approach is the heavy reliance on the nature of a language,91

i.e., it has capitalization, transliteration is valid, and it is well represented in DBpe-92

dia.93

3.2. Multi Task Cross Lingual Training94

Due to the limitations of the previous approach in having to find features that95

are viable in more than one language, like Capitalization, a better approach was96

needed to overcome this limitation. A suitable approach was to rely on embedding97

to let the model find these features by itself.98

In multi task cross lingual training [12], a model is trained on multiple tasks such99

as POS, chunking and NER for more than one language at the same time by using100

a character level embedding GRU [13] model and a word level embedding model.101

This model is trained with a shared embedding layer to capture the morphological102

similarity between languages and learn word vectors that are based on the two103

languages. This embedding space will capture the similarities between words from104

the two languages. The final layer is a Conditional Random Field (CRF) classifier105

[7] which has specific weights for each task.106

The model in (Figure 4) is structured as pluggable components. The bottom107

component is an embedding layer. This layer is shared among different tasks and108

different languages, which means that the model will use the same embedding layer109

if it was trained for English NER, English POS, Arabic Chunking or Spanish POS.110

The preceding layer is a task dependent CRF [7] classifier that works on top of the111

shared embedding layer to produce task specific results (for example: named entities112

in case of NER).113

However this model will require a huge amount of annotated data in every needed114

language. In addition, the model will require retraining whenever more languages115

need to be added. Also the parameters of the model will increase significantly with116

the number of languages and hence increase the complexity of the model. The shared117

embedding layer will not be able to capture any similarity between languages that118

are intrinsically different like English and Arabic.119

These approaches show promising results on the multilingual NLP tasks, however120

the growing complexity of these models with the number of languages makes it near121

impossible to have models that can work on a huge number of languages. Build-122

ing a model to work with a few languages would consume a considerable amount123

of resources(time, annotation effort, ...). Therefore an approach that would work124

independently of the number of languages is needed.125

4. Proposed Approach126

In this section, an approach to build a model that is both efficient and can127

scale reliably with the number of languages presented. The idea of this approach128
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Figure 4: The Multi Task Cross Lingual Training model

is to build a neural NER model using the standard components for the problem:129

Word embedding for embedding words into vectors, Bidirectional LSTM for feature130

extraction and a Conditional Random Field sequence classifier.131

However to introduce language independence to the model a new step; Word132

embedding transformation, is added to the pipeline, which will be able to transform133

the vectors of the words of a certain target language (Arabic in our case) into the134

space of the vectors of the source language (English in our case) which we trained our135

model on. This way the model will be independent of the language of the input and136

will only depend on the quality of the Word Embedding Transformation technique137

that is applied. Thus the model will be composed of four components:138

1. Word Embedding139

2. Word Embedding Transformation140

3. Bidirectional LSTM Layer141

4. Conditional Random Field142

Figure 5 shows the architecture of the proposed neural architecture. First, each143

word in a sentence is embedded into its corresponding word vector using the word144

embedding model. If the word vectors are in a language different than the source145

language (English in this case) the word embedding transformation is invoked to146

transform the vector from the space of the target language to the space of the147

source language. The resulting word vector sequence is then used as the input to a148

bidirectional LSTM layer which encodes the input sequence. Finally a CRF layer is149

used to tag the sequence.150

Figure 5: Architecture of the proposed model

4.1. Word Embedding151

Because language is a sequence of words, while neural networks only work with152

numbers we have to transform our words into a numerical format. Vector space153
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models are the numerical representation of documents in which a vector is used as a154

representation for this document. An example of this is Bag of Words(BOW) [14].155

In BOW models a vector is assigned for each document representing word counts156

for each word in the vocabulary in this document. Consider our vocabulary to only157

have the words: [”the”, ”boy”, ”girl”, ”rides”, ”bus”, ”and”, ”from”]. A representa-158

tion of the string ”the boy rides the bus and the girl rides the bus” would be [4, 1,159

1, 2, 2, 1, 0] which is the count of each word in the vocabulary found in this string.160

Vectors for words can also be computed using BOW by having a one hot repre-161

sentation over the vocabulary. For example the word ”boy” would receive the vector162

[0, 1, 0, 0, 0, 0, 0]. this way we can have vectors representing every word in our163

vocabulary.164

The limitation of this approach is that vectors are very sparse since for a word165

the vector will be mostly zeros except for a single value that corresponds to the166

word. These vectors also lack any information on the semantic meanings of these167

words since the position of the word in the vocabulary gives no information about168

similar words to it.169

Due to these limitations distributed representation of words outperforms tradi-170

tional BOW methods because they are dense vectors that can learn semantic and171

syntactic properties of these words.172

A famous example for this taken from [15] is how their model learned a rela-173

tionship between Country-Capital in the PCA projection of these vectors (Figure174

6).175

From the 2 dimensional PCA projection we can see that the model learned sim-176

ilar representation for countries (China, Russia, Japan, ...) and similar representa-177

tion for capitals (Beijing, Moscow, Tokyo, ...) and the direction of the vector be-178

tween a country-capital is similar. For example the relationship model(”China”)−179

model(”Beijing”) ≈ model(”Russia”) − model(”Moscow”) can be seen from the180

projection.181

These models are trained on huge corpora of data -Wikipedia for example- and182

the model learns from the context information of words the best representation that183

would capture semantic and syntactic information and embed it into the highly184

dense vector.185

Our model employs the Word embedding model introduced in [16] which is a Skip186

Gram model [15] with subword information. Given a matrix W, an entry wi is the187

ith vector in the matrix which is the vector representation of the word i. The Skip188

Gram’s objective is to find word representations that are useful for predicting the189

surrounding words in a sentence or a document. The model is trained to maximize190

the average log probability over a sequence of words w1,w2,w3, ....,wT where c is191

the size of the training context (training window) and wt is the center word.:192

1

T

T∑
t=1

∑
−c≤j≤c,j ̸=0

log p(wt+j|wt) (1)

The basic skip gram model defines the probability of word t + j given word t as193

p(wt+j|wt) using the softmax function:194

log(p(wO|wI)) = log(
exp(v

′⊤
wO

vwI
)∑W

w=1 exp(v
′⊤
w vwI

)
) (2)
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Figure 6: Country-Capital Relationship

where vw and v
′
w are the input and output vector representations of w and W is the195

number of words in the vocabulary. This can be simplified into:196

v
′⊤
wO

vwI
− log(

W∑
w=1

exp(v
′⊤
w vwI

)) (3)

which consists of two terms, the dot product v′⊤
wO

vwI
which represents the similar-197

ity between the two vectors and the other term log(
∑W

w=1 exp(v
′⊤
w vwI

)) being the198

normalization term. Computing the normalization term is very expensive since it199

requires summing over all words in the vocabulary. This makes it impractical to200

compute the gradient of the softmax term ▽p(wO|wI) which is proportional to the201

size of the vocabulary W .202

Negative sampling (NEG) is used as the objective for training the Skip Gram203

model instead of the softmax to overcome the problem of computing the normaliza-204

tion factor. NEG is defined as:205

log σ(v
′⊤
wO

vwI
) +

k∑
i=1

E
wi

∼ Pn(w)[log σ(−v
′⊤
wi
vwi

)] (4)

Negative sampling works by randomly selecting a set of k ”negative” words drawn206

from a uni-gram distribution (Pn), These words are the words the model should not207

be predicting and instead of updating the weights for every word in the vocabulary208

that is not the target word, the optimizer will only update weights for this negative209

sample avoiding a huge computation that would make model training in-feasible.210

In other words the vectors are trained by teaching the model to differentiate211

between the target word and noise.212
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So far the model is only capable of learning a distinct vector representation per213

word. However, this ignores the morphological features of words (prefixes, suffixes,214

n-grams, ...). Therefore, the scoring function needs to be adjusted to take this215

information into account.216

A proper modification for the model would be to learn vector representations217

for words and for character n-grams instead of learning vectors for words only. The218

implication of this is that each word will be decomposed into a set of n-grams and219

the word itself, each element of this set has a distinct vector. this allows for n-gram220

vector sharing between words thus producing high quality vectors that take into221

account the structure of the word itself.222

For ϱw ⊂ 1, ..., G with G being the set of n-grams appearing in W and ϱw being223

the set of n-grams appearing in word w, a vector representation is associated with224

each n-gram, g, a word is represented by the sum of the vectors of its n-grams and225

a unique vector for the word itself, the scoring function is therefore:226

s(w, c) =
∑
g∈ϱw

z⊤g vc (5)

Where zg is a vector representation of each n-gram g.227

For example the word ”Good” can be represented by the set of character n-grams228

of length 3,4 ”Goo”, ”ood”, ”Good” where every n-gram of which will have its own229

vector representation.230

4.2. Word Embedding Transformation231

The idea of this model is to be trained on a corpus from a source language232

(English) Figure 7a -since there are available annotated data- and test the model233

on a target language with less data (Arabic) Figure 7b, this wouldn’t be possible if234

we use the word embedding of the two languages separately. This is due to them235

having different distributions and the model will not understand the target word236

embedding. However, we follow an approach [17] to transform the word embedding237

of our target language to our source language and then use it on our model Figure238

7c. This approach is tested by training the model on an English dataset [18] and239

then evaluate the model on an Arabic dataset [3].240

We can see in Figure 7a two English words projected on a 2 dimensional space241

and in Figure 7b the same two words in Arabic projected on their embedding space.242

We can clearly see that the two embedding spaces are different and that the two243

words do not overlap. The goal of Word Embedding Transformation is to find a244

feasible transformation that can transform the vectors of one of the two spaces into245

the other space in order to have words with the same meaning ideally overlapping246

Figure 7c.247

The transformation can be performed by using a translation matrix that is ca-248

pable of approximating target word embedding into source word embedding. Using249

a translation matrix is a powerful approach that will map one matrix to another by250

matrix multiplication.251

Suppose we have a set of word embeddings that correspond to our target and252

source languages X,Y where X ∈ Rn∗d and Y ∈ Rn∗d such that n is the number of253

vectors and d is the dimension of each vector, our goal is to find a matrix W that254

approximates the function:255
n∑

i=1

||Wxi − yi||2 (6)
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Where xi is our target language vector and yi is the source language vector for256

the ith word. We can solve this equation using Stochastic Gradient Descent to find257

the optimal matrix W that minimizes the error function. Now by using this matrix258

W we can translate any vector from our target language X into our source language259

Y by multiplication with Wxi.260

However, this approach produces sub optimal results due to falling to local min-261

ima and being susceptible to learning rates, as well as being time consuming as you262

have to iterate over your full dataset multiple times, and being susceptible to the263

problems of training neural networks. another solution is favored over this one.264

It is argued that the translation matrix must be an orthogonal matrix [19], to265

prove that let’s first form the similarity matrix S = Y (WXT ) where Y represents266

the word vectors matrix of our source language and X represents the matrix of our267

target language, the matrix W is the transformation matrix.268

Thus the matrix S represents the dot product between every vector in the matrix269

Y and its corresponding vector in the transformed matrix WXT .270

Looking at the dimensions of the matrices Y n∗d.W d∗d.Xd∗n we notice that the271

similarity matrix’s dimensions are Sn∗n this represents for each vector in the target272

language its similarity with every vector in the source language. We can also have a273

reverse similarity matrix between the source vectors and the target vectors defined274

by S ′ = XQY T .275

For this to remain self consistent, i.e the two similarity matrices have the same276

values, because they both calculate the similarity between the two matrices X and277

Y, we must have S ′ = ST but ST = XW TY T therefore Q = W T which means that278

if W maps the source language to the target language then W T maps the target279

language back to the source language.280

Given the matrix W we assume that x ≈ W Ty and y ≈ Wx therefore x ≈281

W TWx therefore we can conclude that the transformation matrix W must be an282

orthogonal matrix satisfying W TW = I, where I denotes the identity matrix.283

We now modify our objective function to satisfy the orthogonality constraint on284

W to be:285

max
O

n∑
i=1

||yTi Wxi||2, subject to W TW = I (7)

This solution uses Singular Value Decomposition(SVD) to find the translation286

matrix. SVD is favored over Principal Components Analysis (PCA) to avoid the287

cost of calculating the huge covariance matrix over the dictionaries.288

The way SVD works is by factoring an m ∗ n matrix M into a product of three289

matrices:290

M = UΣV T (8)
Where U is m ∗ k, Σ is k ∗ k and V T is k ∗ n. SVD is very common in the field of291

natural language processing, it is used in many algorithms including but not limited292

to:293

• Latent Semantic Analysis294

• Latent Semantic Indexing295

• Visualization of Word embedding296
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We follow [17]’s method which uses SVD only. Given the source language dictionary297

YD and the target language dictionary XD we normalize each vector by dividing it298

by its norm. We then multiply the two dictionaries together M = Y T
DXD and then299

compute the SVD of M which is equal to M = UΣV T .300

To map the two languages to a single space we multiply each dictionary with301

one of the decompositions, our similarity function will become302

S = Y UV TXT (9)

where303

sij = yTi UV Txj (10)
304

= (UTyi).(V
Txj) (11)

thus the two dictionaries are mapped to a single space.305

This approach produces an exact solution (Equation 9) to our objective function306

(Equation 7).307

(a) An example of two En-
glish words in their embed-
ding space

(b) An example of their Ara-
bic translation in their em-
bedding space

(c) Ideally after the transfor-
mation the two Arabic words
will overlap with the two En-
glish words

Figure 7: Word embedding transformation

4.3. Bi-LSTM encoding308

Neural Networks have always had a strong ability to perform feature extraction309

even with time series or sequences they’re still able to capture time related features310

due to their hierarchical nature and recurrence relations.311

For this we will be using the Long-short term memory [20] algorithm to per-312

form feature extraction from our word vectors sequence in order to convey temporal313

features to the classifier.314

LSTM is the core of our model (Figure 8) since it will be responsible for extracting315

the useful features from the word vectors to help the classifier find the correct tags316

for the sequence.317

Figure 8: Model detailed architecture for each time step

The main strength of LSTM is its ability to handle long term dependencies in a318

sequence of steps while updating its state with information from context due to its319

gates that are responsible for updating cell states.320

10



Figure 9: LSTM architecture (courtesy of Skymind AI)

Each LSTM unit (Figure 9) holds a cell state C which flows from timestep t− 1321

to t where some modifications occur in between due to the LSTM gates, these gates322

are a way to optionally let information pass through. They are composed of a323

sigmoid layer that outputs a value between 0 and 1 and a multiplication operation324

in which multiplying by 0 means prevent the information flow and 1 means allow325

full information flow. The forget gate receives the hidden state at the previous time326

step ht−1 and the input xt and decides how much information needs to be forgotten327

by the following equation:328

ft = sigmoid(Wf . [ht−1, xt] + bf ) (12)

The input gate decides what new information need to be stored in the cell state, it329

follows the following equation:330

it = sigmoid(Wi . [ht−1, xt] + bi) (13)

We also compute a candidate set of values to be added to the cell state:331

C̃t = tanh(Wc . [ht−1, xt] + bc) (14)

Following these computations is the update on the cell state which occurs by the332

equation:333

Ct = ft ∗ Ct−1 + it ∗ C̃t (15)
Finally the model decides on what it should output according to its output gate:334

ot = sigmoid(Wo . [ht−1, xt] + bo) (16)

The output to the hidden state is then computed by:335

ot = tanh(Ct) (17)

A Bi-directional LSTM layer (Figure 10) is added to our model instead of the336

classic Uni-directional LSTM since allowing the model to read text right-to-left and337
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Figure 10: Bi-LSTM architecture [21]

left-to-right and aggregating their outputs would improve it significantly by peeking338

into the future as well as benefiting from the past [4] [5]. It will also make the model339

invariant to language writing direction. for example we train the model on English340

which is a left-to-right language and evaluate it on Arabic which is a right-to-left341

language.342

We pass the ht vector for every time step to the next layer which can be another343

layer of Bi-LSTM for an added layer of feature extraction or a Conditional Random344

Field classifier.345

4.4. Conditional Random Field Classifier346

Going from the features extracted by the Bi-LSTM to class labels requires a347

classifier that can take as input the features at each time step and produce as348

output the class label for each word.349

For sequence classification the most common classifiers used in the domain of350

NER are:351

• LSTM352

• Hidden Markov Model353

• Simple RNN354

• Conditional Random Field355

The CRF classifier is used for its strength and its current results in state of the art356

NER models [4] [5]. A huge strength of CRF is its ability to work with output classes357

that are dependent, an example of this is that for any I-*(Inside class) there must358

be a preceding B-*(Beginning class). CRF is capable of exploiting this dependency359

thus improving the results and avoiding unintuitive class outputs.360

Let h1:N be our input to the CRF layer which are the features for each word in361

a sequence of length N where (1:N) denotes the words from index 1 to N. These362

features are calculated by ht = Bi-LSTM(xt). let z1:N be our class labels for the363

input sequence. The linear chain CRF model defines conditional probability of the364

class labels given the input by the equation:365

p(z1:N |h1:N) =
1

Z
exp (

N∑
n=1

F∑
i=1

λifi(zn−1, zn, h1:N , n)) (18)
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In the equation the term Z is the normalization factor or the partition function366

which is used to make p(z1:N |h1:N) a valid probability, the term F is the number of367

feature functions we’re going to use.368

Z =
∑
z1:N

exp (
N∑

n=1

F∑
i=1

λifi(zn−1, zn, h1:N , n)) (19)

In the probability equation we had feature functions fi, each of which is a function369

that takes as input the current class label, the label of the previous class, the input370

and the current position and outputs a boolean value 0 or 1. λi is the feature weight371

for feature i, if this weight is large and positive then we emphasis that the probability372

of the current label is high if this feature is true. An example of a feature function:373

f1(zn−1, zn, h1:N , n) =

{
1, if zn−1 = B-PERS and ht = Bi-LSTM(John)
0, Otherwise

A posi-374

tive weight for this function would indicate that the model prefers the tag B-PERS375

for the current word, if the function was assigned a negative weight it would indicate376

that the model does not prefer the tag B-PERS for the current word.377

In our case the features will be the output of the Bi-LSTM. In this case the378

Bi-LSTM layer(s) can be considered as the feature function we are using.379

The appropriate objective for parameter learning of CRF is to maximize the con-380

ditional likelihood of the training data where m is the number of training examples:381

m∑
j=1

log p(z1:N |h1:N) (20)

This learning procedure is conducted by computing the gradients for the objective382

function (Equation 20) and use the gradient in a gradient based optimization algo-383

rithm like Stochastic Gradient Descent.384

Now that the model is trained we can use it to calculate the probability p(z1:N |h1:N)385

for any tag for each token in an input sequence. An approach to take the final se-386

quence is by greedily taking the tag that has the highest probability. However this387

approach would have to check an exponential number of tags because it has to check388

KN possible tags with K being the number of classes in our model. Another ap-389

proach would be to use the Viterbi algorithm [22] which is a dynamic programming390

algorithm that works in polynomial time to find the optimal sequence of tags.391

5. Experimental Results392

First we define the metrics we used in our evaluation. We used Precision and393

Recall and their harmonic mean (F1-score).394

Precision is defined as the number of true positives divided by the number of395

true positives and false positives. It is considered as a measure of the classifier’s396

exactness.397

Precision =
TruePositives

TruePositives+ FalsePositives
(21)

Recall is defined as the number of true positives divided by the number of true398

positives and false negatives. It can be considered the sensitivity or the true positive399

rate.400

Recall =
TruePositives

TruePositives+ FalseNegatives
(22)
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In our evaluation we use the F1-score which is a balance between them.401

F1score = 2 ∗ Precision ∗Recall

Precision+Recall
(23)

We trained our model on the WikiNER English dataset [18] by using the word402

embedding model [16] which is open source. We evaluated the model on English403

and noted its results then we tested it on the ANER dataset [3] with only applying404

the transformation and no fine tuning of the model.405

The model was written using Keras [23], it was trained on an Ubuntu 16.04406

system running on an Intel i7-7500U processor and accelerated by an Nvidia Geforce407

940MX GPU. All the code for the experiment is available as open source on Github:408

Code on Github409

The results of the model imply that the model succeeded at detecting many410

named entities in the Arabic text without being exposed to Arabic before. This411

approach is valid for any other language that we have a transformation matrix for.412

Recently 78 matrices for transformation [17] have been released as open source.413

These matrices can be used to transform the word embedding space from any of the414

78 languages to English, which can be used to detect named entities in 78 different415

languages with only being trained on English.416

Classification results per class for English
Precision Recall F1-Score

PER 0.88 0.93 0.91
MISC 0.80 0.73 0.76
LOC 0.86 0.85 0.86
ORG 0.82 0.72 0.76

Average scores 0.84 0.82 0.83

Table 1: Classification Report for Precision, Recall and F1-Scores on WikiNER

We can see from Table 1 that the model successfully learns to detect named417

entities in the English text. The model’s accuracy depends on many factors among418

which the training data and the complexity of the model. The model seems to419

perform best on the persons class and seems to perform worst on the miscellaneous420

class.421

Classification results per class for Arabic
Precision Recall F1-Score

PER 0.05 0.01 0.01
MISC 0.01 0.57 0.02
LOC 0.07 0.00 0.00
ORG 0.02 0.05 0.03

Average scores 0.05 0.07 0.02

Table 2: Classification Report for Precision, Recall and F1-Scores on ANER without Alignment

In Table 2 the model is tested on ANER which is the Arabic dataset without422

aligning the word vectors with the English word vectors. Recall that the model423

was never trained to understand Arabic and so testing the model on Arabic would424
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produce a score of 0 (or almost 0) which is the case as seen in the table. The model425

fails to capture any entities -Except for a very tiny number of entities that could be426

random-.427

Classification results per class for Arabic
Precision Recall F1-Score

PER 0.68 0.52 0.59
MISC 0.05 0.06 0.06
LOC 0.80 0.44 0.57
ORG 0.32 0.08 0.12

Average scores 0.58 0.36 0.43

Table 3: Classification Report for Precision, Recall and F1-Scores on ANER with Alignment

The results in Table 3 shows that after alignment the model succeeds at detecting428

named entities in Arabic which it was never trained on. It detects the class persons429

with precision of 68% compared to 88% in English and it’s also its top scoring class.430

Figure 11: ROC curve for LOC class in English Figure 12: ROC curve for LOC class in Arabic

Figure 13: ROC curve for MISC class in English Figure 14: ROC curve for MISC class in Arabic

ROC figures and their corresponding AUC in Figures 11, 12, 13, 14, 15, 16,431

17, 18 show that the proposed approach performs very well compared to random432
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Figure 15: ROC curve for ORG class in English Figure 16: ROC curve for ORG class in Arabic

Figure 17: ROC curve for PERS class in English Figure 18: ROC curve for PERS class in Arabic

guessing and that the system is capable of classifying the aforementioned classes in433

both English and Arabic without the need for retraining the model on Arabic.434

Figure 19: LSTM vs BiLSTM performance
on English data

Figure 20: LSTM vs BiLSTM performance on
aligned Arabic data

Hyper parameter selection for the model was performed empirically by iterating435
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over a finite set of parameters and choosing values that maximize our objective436

function (Grid search).437

The main set of parameters to choose from were whether to use Bidirectional438

LSTM or Unidirectional LSTM and the number of units at the LSTM layer. These439

parameters were tested on both the English and Arabic models.440

Figure 19 shows that BiLSTM performance is superior to LSTM performance441

on English data while it fluctuates on Arabic data according to Figure 20. It’s also442

noted that the F-score values starts degrading just below 300 units. This makes the443

optimal choice for units to be around 256 units.444

6. Conclusion445

We exploit orthogonal transformation of word embeddings to create a language446

independent NER model that was trained on English and evaluated on Arabic with-447

out being explicitly exposed to Arabic before or fine tuned on an Arabic dataset.448

This paves the road to language independent NLP models that are capable of solving449

typical NLP tasks without being explicitly trained on a specific language.450
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